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Under the flat Euclidean space–time background, the expressions for the leading terms
of several two-point curvature vacuum correlation functions inN-dimensional Einstein
gravity are calculated by using the perturbative expansion of the metric. It is shown that
the contributions of the leading terms of such two-point curvature vacuum correlation
functions are all vanishing.
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1. INTRODUCTION

The metric determines the connection from which we can obtain the curvature
of the space–time.

After the covariant quantization of the gravitational field, we can obtain the
graviton propagator which is the two-point Green’s function of the gravitational
field. In terms of the propagating of gravity, we calculate the possible two-point
transitions of the connection and the curvature, and formulate a valuable question
for research (Guadagniniet al., 1990; Modanese, 1992).

As for the two-point transition in curved space–time, it is a nontrivial physical
question to construct an appropriate formulation of the curvature correlation func-
tion in vacuum. In recent years, the property of the holonomy which determines the
parallel transport of vector in a space–time is conspicuous more and more. As we
know, the Wilson loop that can be obtained from the trace of the holonomy is in-
variant under coordinate and gauge transformations. Thus, it often has been used to
investigate gravity states (Bartoloet al., 1995; Griego, 1996) and to construct “ob-
servable quantities” (Rovelli and Smolin, 1990, 1995) in nonperturbative quantum
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gravity theory. In perturbative quantum gravity, the parallel transport determined
by the Wilson loop has been used to research the possible quantum behavior of
excitation (Modanese, 1994) of the space–time curvature and to construct the
two-point correlation functions of the space–time curvature.

By using the holonomy as the propagator of parallel transport of a vector
along a geodesic, some forms of the invariant curvature correlation functions were
defined in Modanese (1992). It is a valuable way to construct the correlation func-
tions in curved space–time. In this paper, according to this way, under the Euclidean
space–time background, we formulate several two-point curvature vacuum correla-
tion functions and calculate their leading term contributions in theN-dimensional
Einstein gravity one by one. It is shown that the leading term contributions of such
correlation functions vanish. Thus, the gravity cannot propagate in vacuum. This
is a reasonable result for the gravity.

In Section 2, the perturbative expansion of the curvature inN-dimensional
Einstein gravity is calculated. In Section 3, the propagators of gravity are given. In
Section 4, the curvature vacuum correlations functions are calculated. In Section 5,
conclusion and discussion are given.

2. THE PERTURBATIVE EXPANSION OF THE CURVATURE
IN N-DIMENSIONAL EINSTEIN GRAVITY

Let M be anN-dimensional space–time manifold, its geometry given by the
metricgµν(x). The dynamics of theN-dimensional Einstein gravitational field is
given by the action

S= 1

k2

∫
dN x

√
g(x)R(x) (1)

where k2 = 16πG (G is the Newtonian gravitational constant, andg(x) =
detgµν(x)). The Christoffel connection ofM is defined as

0αµβ =
1

2
gαλ(gβλ,µ + gµλ,β − gµβ,λ)

The Riemann curvature tensor is

Rαµβν = 0αµ,βν − 0αµν,β + 0λµβ0αλν − 0λµν0αλβ
We decompose the metric tensorgµν(x) as

gµν(x) = δµν + hkhµν(x) (2)

whereη denotes the small parameter. The termδµν in (2) is interpreted as the
classical background metric, while the termhµν(x) is regarded as a weak grav-
itation field which represents gravity propagating in the vacuum. The indices of
hµν(x) are raised and lowered by the metric of Euclidean backgroundδµν andδµν ,
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respectively. Also the inverse metric can be obtained as

gµν(x) = δµν − hkhµν + h2k2hµαhνα + O(h3) (3)

whereO(h3) is a three-order small quantity inh.
Substituting (2) and (3) into (1), we obtain the expansion formula for the

connection

0αµβ = 0̄αµβ − ¯̄0αµβ + O(h3) (4)

where

0̄αµβ =
k

2
(hαβ,µ + hαµ,β − hµβ,α)

¯̄0αµβ =
1

2
h2k2(hαλhλβ,µ + hαλhλµ,β − hαλhµβ,λ)

By using (4), we can expand the curvature to a linear part and a square part in
terms ofh. We calculate the Riemann curvature tensor, the Ricci curvature tensor,
the rotation matrix, and the curvature scalar.

(a) The Riemann curvature tensor

Rαµβν = R̄αµβν + ¯̄Rαµβν + O(h3) (5)

where

R̄αµβν = 0̄αµβ,ν − 0̄αµν,β

= 1

2
hk(hαµ,β,ν + hαβ,µ,ν − hβµ,ν,α − hαµ,ν,β − hαν,µ,β + hµν,α,β)

(6)

¯̄Rαµβν = ¯̄0αµβ,ν − ¯̄0αµν,β + 0̄λµβ0̄αλν − 0̄λµν0̄αλβ

= −1

2
h2k2[hλα(hµλ,β + hβλ,µ − hβµ,λ)],ν

+ 1

2
h2k2[hαλ(hµλ,ν + hνλ,µ − hµν,λ)],µ

+ 1

4
h2k2(hµλ,β + hβλ,µ − hβµ,λ) · (hαλ,ν + hαν,λ − hλν,α)

− 1

4
h2k2(hµλ,ν + hνλ,µ − hµν,λ) · (hλα,β + hαβ,λ − hβλ,α)

(b) The Ricci curvature tensor

Rµν = Rαµλν = R̄µν + ¯̄Rµν + O(h3) (7)
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where

R̄µν = ¯̄0λµπ,ν − ¯̄0λµν,λ

= 1

2
hk(hµν,α,α + hλλ,µ,ν − hνλ,µ,λ − hµλ,ν,λ) (8)

¯̄Rµν = ¯̄0ρµρ ,ν − ¯̄0ρµν,ρ + 0̄ρλν0̄λµρ − 0̄λµν0̄ρλρ

= 1

2
h2k2(hρλ,νhµρ ,λ − hρλ,νhµλ,ρ − hρλhλρ ,µ,ν

+ hρλhµρ ,λ,ν + hρλhλν,µ,ρ − hρλhµν,λ,ρ + hρλ,ρhµλ,ν

+ hρλ,ρhνλ,µ − hρλ,ρhµν,λ + hρν,λhµλ,ρ − hλν,ρhµλ,ρ)

= 1

4
h2k2(hµν,λhρρ ,λ − hρλ,νhρλ,µ − hµλ,νhρρ ,λ − hνλ,µhρρ ,λ)

(c) The “rotation matrix”

Rµν = Rµναβσ
αβ

= [R̄αναβ + ¯̄R
µ

ναβ + O(h3)
]
σαβ (9)

whereσαβ is an infinitesimal surface aroundx. Equation (9) can be noted
as rotation matrix (Modanese, 1992).

(d) The curvature scalar

R= gµνRµν = R̄+ ¯̄R+ O(h3) (10)

where

R̄ = hk(hµµ,νν − hµν,µν)− h2k2hαγ

× (hαγ ,ββ − hαβ,β,γ − hβγ ,α,β + hββ,α,γ ) (11)

¯̄R = 1

4
h2k2(2hµβ,αhαβ,µ − 3hµβ,αhµβ,α − 4hµβ,βhαα,µ

+ 4hµβ,βhαµ,α + hαα,µhββ,µ)

3. THE PROPAGATORS

3.1. The Propagators of Parallel Transport of Tensor

We define the vacuum correlation function by means of the vector paral-
lel transport propagator (Modanese, 1992, 1993) along the geodesic in order to
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obtain the appropriate form of the invariant two-point curvature vacuum corre-
lation function in the curved space–timeM . Let a vectorνµ

′
(x′) at the pointx′

parallel transport to a vectorνµ(x) at the pointx. Then the parallel transport is
determined by the holonomy

Hµ

µ′ (x, x′) = p exp

(∫ x

x′
dξα 0µαµ′ (ξ )

)
(12)

whereHµ

µ′ (x, x′) is the propagator of parallel transport of the vector, andP means
that the integral is computed along the geodesic. The propagator of parallel trans-
port of tensorTµν···(x) on M is given by

Hµν··
µ′ν ′ ···(x, x′) = Hµ

µ′ (x, x′)H ν
ν ′ (x, x′) · · · (13)

The indices ofHµ

µ′ (x, x′) are raised and lowered bygµ
′ν ′ (x′) andgµν(x) respec-

tively:

Hµ

µ′ (x, x′)gµ
′ν ′ (x′) = Hµν ′ (x, x′) (14)

Hµ

µ′ (x, x′)gµν(x) = Hνµ′ (x, x′) (15)

In order to require the propagators of parallel transport which are used in different
invariant curvature vacuum correlations, we expand (12) and have

Hµ

µ′ (x, x′) = δµµ′ +
∫ χ

χ ′
dξα 0µαµ′ (ξ )

+ 1

2

∫ x

x′
dξα

∫ x

x′
dξβ 0µαµ′ (ξ )0µβµ′ (ξ )+ O(03) (16)

Using (13)–(16), (2), and (3), we can obtain the propagators of parallel transport
which are used in different curvature correlation functions along the geodesic as
follows:

(a) The propagator of parallel transport of the Riemann curvature tensor

Hαβγα′β ′γ ′
µµ′ = Hµµ′H

αα′Hββ ′H γ γ ′ = ◦
Hαβγα′β ′γ ′
µµ′ = H̄αβλα′β ′γ ′

µµ′ + O(h2)

(17)

where

◦
Hαβγα′β ′γ ′
µµ′ = δµµ′δαα′δββ ′δγ γ ′ (18)
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H̄αβγα′β ′γ ′
µµ′ = hk[δαα

′
δββ

′
δγ γ

′
hµµ′ (x)− δµµ′δαα′δββ ′hγ γ ′ (x′)

− δµµ′δαα′δγ γ hββ
′
(x′)− δµµ′δββ ′δγ γ ′hαα′ (x′)]

+ δµµ′δαα′δββ ′
∫ χ

χ ′
dξ P 0̄γ γ

′
ρ (ξ )+ δµµ′δαα′δγ γ ′

×
∫ χ

χ ′
dξρ 0̄ββ

′
ρ (ξ )+ δµµ′δββ ′δγ γ ′

∫ χ

χ ′
dξρ 0̄αα

′
ρ (ξ )

+ δαα′δββ ′δγ γ ′
∫ χ

χ ′
dξρ 0̄µµ

′
ρ (ξ )

(b) The propagator of parallel transport of the Ricci curvature tensor

Hαβα′β ′ = Hαα′Hββ ′ = ◦
Hαβα′β ′ = H̄αβα′β ′ + O(h2) (19)

where
◦
Hαβα′β ′ = δαα′δββ ′ (20)

H̄αβα′β ′ = δαα′
[
−hkhββ

′
(x′)+

∫ x

x′
dξρ 0̄ββ

′
ρ (ξ )

]
+ δββ ′

[
−hkhαα

′
(x′)+

∫ x

x′
dξρ 0̄αα

′
ρ (ξ )

]
(c) The propagator of parallel transport of the rotation matrix

Hαα′
µµ′ = Hµµ′H

αα′ = ◦
Hαα′
µµ′ + H̄αα′

µµ′ + O(h2) (21)

where
◦
Hαα′
µµ′= δµµ′δαα

′
(22)

H̄αα′
µµ′ = hkδαα

′
hµµ′ (x)− hkδµµ′h

αα′ (x′)+ δµµ′
∫ x

x′
dξρ 0̄αα

′
ρ (ξ )

+ δαα′
∫ x

x′
dξρ 0̄µµ

′
ρ (ξ )

3.2. The Graviton Free Propagator

To get the propagator of gravity in theN-dimensional Einstein gravity, we
may consider the functional

Z =
∫

d[g] exp

[
i

h
{S(g)}

]
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as the original generating functional for the path integral quantization of the grav-
itational field. However, for simplicity, here we use the familiar Feynman–DeWitt
propagator:

〈hµν(x)hαβ(y)〉 = −CN{δµ(αδβ)ν − [2/(N − 2)]δµνδαβ}(x − y)2−N (23)

whereCN (N ≥ 3) is a positive coefficient, and

CN = 2N−2πN/2

(2π )N

0(N/2− 1)

0(1)

In the above expression, the symbol0 is the0 function.

4. THE CALCULATION OF THE CURVATURE VACUUM
CORRELATION FUNCTIONS

4.1. Definition of the Curvature Vacuum Correlation Functions

Now, we consider the tensor propagator which parallel transports a tensor
at pointx′ to a tensor at pointx along the geodesic of lengthD which connects
x′ to x. For the “different curvatures,” we may formulate the invariant two-point
vacuum correlation functions as follows:

(a) The two-point vacuum correlation function of the Riemann curvature
tensor

GRiemann(D) = 〈Rµναβ(x)H ναβν ′α′β ′
µµ′ (x, x′)Rµ

′
ν ′α′β ′ (x

′)
〉
◦ (24)

(b) The two-point vacuum correlation function of the Ricci curvature tensor

GRicci(D) = 〈Rαβ(x)Hαβα′β ′ (x, x′)Rα
′β ′ (x′)〉◦ (25)

(c) The two-point vacuum correlation function of the rotation matrix

GLoop(D, σ, σ ′) = 〈Rµν (x)H νν ′
µµ′ (x, x′)Rµ

′
ν ′ (x

′)
〉
◦ (26)

(d) The two-point vacuum correlation function of the curvature scalar

GR(D) = 〈R(x)R(x′)〉◦ (27)

4.2. Calculation of the Correlation Functions

(a) The calculation ofGRiemann(D)
Introducing (5) and (17) into (24), we get

GRiemann(D) = G1
Riemann(D)+ G2

Riemann(D)+ O(h4)



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp464-ijtp-372239 May 30, 2002 10:31 Style file version May 30th, 2002

968 Shao, Noda, Shao, and Shao

where

G1
Riemann(D) = 〈R̄µναβ(x)

◦
H ναβν ′α′β ′
µµ′ (x, x′)R̄µ

′
ν ′α′β ′ (x)

〉
◦ (28)

G2
Riemann(D) = 〈 ¯̄Rµναβ(x)

◦
H ναβν ′α′β ′
µµ′ (x, x′)R̄µ

′
ν ′α′β ′ (x

′)
〉
◦

+ 〈R̄µναβ(x)
◦
H ναβν ′α′β ′
µµ′ (x, x′) ¯̄Rµ

′
ν ′α′β ′ (x

′)
〉
◦

+ 〈R̄µναβ(x)
◦
H ναβν ′α′β ′
µµ′ (x, x′)R̄µ

′
ν ′α′β ′ (x

′)
〉
◦

Now, we calculate the first termG1
Riemann(D) of the correlation function

of the Riemann curvature tensor. Putting (6) and (18) into (28), we get

G′Riemann(D) = 1

4
h2k2〈(hαµ,ν,β(x)− hαν,µ,β(x)

− hβµ,ν,α(x)+ hνβ,µ,α(x)) · (hαµ,ν,β(x′)

− hαν,µ,β(x′)− hβµ,ν,α(x′)+ hνβ,µ,α(x′))〉◦

= 4× 1

4
h2k2[〈hαµ,ν,β(x)hαµ,ν,β(x′)〉◦

− 〈hαµ,ν,β(x)hαν,µ,β(x′)〉◦ − 〈hαµ,ν,β(x)hβµ,ν,α(x′)〉◦
+ 〈hαµ,ν,β(x)hνβ,µ,α(x′)〉◦] (29)

Substituting (23) into (29) and using

h
CN

(x − y)N−2
= h

∫
dN [(2π )−N P−2] · eip(x−x′)

= −δN(x − y)

whereh = ∂µ∂µ = ∂µ∂µ.
We obtain the result

G1
Riemann(D) = h2k

N3− 3N2+ 2

N − 2
h δN(x − x′) (30)

(b) The calculation ofGRicci(D)
Putting (7) and (18) into (25), we get

GRicci(D) = G1
Ricci(D)+ G2

Ricci(D)+ O(h4)

where

G1
Ricci(D) = 〈R̄αβ(x)

◦
Hαβα′β ′(x, x′)R̄α′β ′ (x′)〉◦ (31)
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G2
Ricci(D) = 〈 ¯̄Rαβ(x)

◦
Hαβα′β ′(x, x′)R̄α′β ′ (x′)〉◦

+ 〈R̄αβ(x)
◦
Hαβα′β ′(x, x′) ¯̄Rα′β ′ (x

′)〉◦
+ 〈R̄αβ(x)H̄αβα′β ′(x, x′)R̄α′β ′ (x′)〉◦

In order to obtainG1
Ricci(D), we introduce (8) and (20) into (31), and then

we have

G1
Ricci(D) = 1

4
h2k2〈(hαβ,γ ,γ (x)+ hγ γ ,α,β(x)− hβγ ,α,γ (x)

− hαγ ,β,γ (x)) · (hαβ,γ ,γ (x′)+ hγ γ ,α,β(x′)

− hβγ ,α,γ (x′)− hαγ ,β,γ (x′))〉◦

= 1

4
h2k2[〈hµν,α,α(x)hµν,β,β(x′)〉◦ + 〈hµµ,αα(x)hνν,ββ(x′)〉◦
− 2〈hµµ,α,α(x)hλν,λ,ν(x

′)〉◦ − 2〈hνλ,α,α(x)hµν,µ,λ(x
′)〉◦

+ 2〈hνλ,µ,λ(x)hµα,ν,α(x′)〉◦] (32)

Putting (23) into (32), we get

G1
Ricci(D) = h2k

N3− 3N2− 2N + 4

4(N − 2)
h δN(x − x′) (33)

(c) The calculation ofGLoop(D, σ, σ ′)
By virtue of (9) and (21), we may get from (26)

GLoop(D, σ, σ ′) = G1
Loop(D, σ, σ ′)+ G2

Loop(D, σ, σ ′)+ O(h4) (34)

where

G1
Loop(D, σ, σ ′) = 〈R̄αβµν(x)

◦
Hββ ′
αα′ (x, x′)R̄α

′
β ′µ′ν ′ (x

′)
〉
◦σ

µνσµ
′ν ′ (35)

G2
Loop(D, σ, σ ′) = 〈 ¯̄Rαβµν(x)

◦
Hββ ′
αα′ (x, x′)R̄α

′
β ′µ′ν ′ (x

′)
〉
◦σ

µνσµ
′ν ′

+ 〈R̄αβµν(x)
◦
Hββ ′
αα′ (x, x′) ¯̄Rα

′
β ′µ′ν ′ (x

′)
〉
◦

+ 〈R̄αβµν(x)H̄ββ ′
αα′ (x, x′)R̄α

′
β ′µ′ν ′ (x

′)
〉
◦

Using (6) and (22), we have from (35)

G1
Loop(D, σ, σ ′) = 1

4
h2k2σµνσµ

′ν ′ 〈(hαµ,ν,β(x)+ hνβ,µ,α(x)

− hµβ,ν,α(x)− hαν,µ,β(x′)) · (hαµ,ν ′,β ′ (x
′)
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+ hν ′β,µ′,α(x′)− hµ′β,ν ′,α(x′)− hαν ′,µ′,β(x′))〉◦

= 1

4
h2k2σµνσµ

′ν ′ [〈hαµ,ν,β(x)hαµ′ν ′,β(x′)〉◦
+ 〈hαµ,ν,β(x)hνβ,µ′,α(x′)〉◦ − 〈hµα,ν,β(x)

× hµ′β,ν ′,α(x′)〉◦ + 〈hαµ,ν,β(x)hαν ′,µ′,β(x′)〉◦
+ 〈hνβ,µ,α(x)hµ′,α,ν ′,β(x′)〉◦ + 〈hνβ,µ,α(x)

× hν ′β,µ′,α(x′)〉◦ + 〈hνβ,µ,α(x)hµ′,β,ν ′,α(x′)〉◦
− 〈hνβ,µ,α(x)hαν ′,µ′,β(x′)〉◦ − 〈hµβ,ν,α(x)

× hαµ′,ν ′,β(x′)〉◦ − 〈hµβ,ν,α(x)hν ′β,µ′,α(x′)〉◦
+ 〈hµβ,ν,α(x)hµ′β,ν ′α(x′)〉◦ + 〈hµβ,ν,α(x)

× hαν ′,µ′,β(x′)〉◦ − 〈hαν,µ,β(x)hαµ′ν ′,β(x′)〉◦
− 〈hαν,µ,β(x)hν ′β,µ′,α(x′)〉◦ + 〈hαν,µ,β(x)

× hµ′β ′ν ′,α(x′)〉◦ + 〈hαν,µ,β(x)hαν ′,µ′,β(x′)〉◦] (36)

Introducing (23) into (36), we obtain

G1
Loop(D, σ, σ ′) = 2h2k2 N2− 2N − 2

N − 2
σµνσ λν ∂µ∂λδ

N(x − x′) (37)

In our abelian approximation, the calculation result ofG1
Loop(D, σ, σ ′)

is identical to the one of a Wilson loop computed along a dumbbell-like
contour.

(d) The calculation ofGR(D)
Putting (15) into (35), we get

GR(D) = G1
R(D)+ G2

R(D)+ O(h4)

where

G1
R(D) = 〈R̄(x)R̄(x′)〉◦ (38)

G2
R(D) = 〈R̄(x) ¯̄R(x′)〉◦ + 〈 ¯̄R(x)R̄(x′)〉◦

Using (11), and from (38), we have

G1
R(D) = h2k2〈(hµµ,ν,ν(x)− hµν,µ,ν(x)) · (hµµ,ν,ν(x

′)− hµν,µ,ν(x
′))〉◦

= h2k2[〈hµµ,ν,ν(x)hαα,β,β(x′)〉◦ − 〈(hµµ,ν,ν(x)hαβ,α,β(x′)〉◦
− 〈hµν,µ,ν(x)− hαα,β,β(x′)〉◦ + 〈hµµ,ν,ν(x)hαβ,α,β(x′)〉◦]

(39)
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By virtue of (22) and (39), the following result is obtained:

G1
R(D) = −h2k2 2(N − 1)

N − 2
hδN(x − x′) (40)

5. DISCUSSION

Expressions (30), (33), (37), and (40) show that all the leading terms of the
correlation functionsGRiemann, GRicci, GLoop, andGR contain the derivative factors
of δ-function, which vanish in the case we consider. Thus, we can show that the
contribution of the first term, of orderh2k2, vanishes for every vacuum correlation
function in theN-dimensional Einstein gravity. We conclude that the contribution
of the first term of orderh2k2 vanishes for every vacuum correlation function in
the N-dimensional Einstein gravity. As for the higher order, contributions come
from the second terms and the loop corrections may be nonvanishing, but their
quantities are very small. In Einstein gravity, because of the mass dimension of
the gravitational coupling constantk, after quantization of the gravity we shall get
a non-renormalizable quantum theory. So the value of the higher order terms and
the corrections is not so important as the value of the first term to each correlation
function. Thus, under the current situation of perturbative quantization of the
gravity, the two-point curvature correlation functions shall vanish (neglecting the
higher order contributions). This result is consistent with many authors’ estimation
(Modanese, 1992, 1994).

If we consider the action of Einstein gravity under the flat Minkowski space–
time background as

S= 1

k2

∫
dN x

√
−g(x)gµνRµν

and expand the metric density perturbatively with the Minkowski metricηµν , we
have

g̃µν = √−ggµνηµν + hkhµν

For the original generating functional, we set

Z =
∫

d[g̃] exp

[
i

h
{S(g̃)}

]
Then the calculation results of the first terms remain identical to the results of (30),
(33), (37), and (40), respectively.

If one defines the correlation functions as those given in this paper, and
considers the renormalizableR+ R2+ R··R··-gravity, one can obtain the fact that
the leading terms of the two-point vacuum correlation functions do not vanish.
In the R+ R2+ R··R··-gravity, the curvature may be used as the counter-terms
in the lagrangian to cancel the divergences in the theory (Stelle, 1977), and the
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curvature can be propagated in the gravity; this is consistent with that the curvature
correlation functions of the gravity are not zero.
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