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Curvature Vacuum Correlations in N-Dimensional
Einstein Gravity
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Under the flat Euclidean space—time background, the expressions for the leading terms
of several two-point curvature vacuum correlation functiond idimensional Einstein
gravity are calculated by using the perturbative expansion of the metric. It is shown that
the contributions of the leading terms of such two-point curvature vacuum correlation
functions are all vanishing.
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1. INTRODUCTION

The metric determines the connection from which we can obtain the curvature
of the space-time.

After the covariant quantization of the gravitational field, we can obtain the
graviton propagator which is the two-point Green’s function of the gravitational
field. In terms of the propagating of gravity, we calculate the possible two-point
transitions of the connection and the curvature, and formulate a valuable question
for research (Guadagniet al, 1990; Modanese, 1992).

As for the two-point transition in curved space—time, it is a nontrivial physical
question to construct an appropriate formulation of the curvature correlation func-
tion in vacuum. In recent years, the property of the holonomy which determines the
parallel transport of vector in a space—time is conspicuous more and more. As we
know, the Wilson loop that can be obtained from the trace of the holonomy is in-
variant under coordinate and gauge transformations. Thus, it often has been used to
investigate gravity states (Bartadbal,, 1995; Griego, 1996) and to construct “ob-
servable quantities” (Rovelliand Smolin, 1990, 1995) in nonperturbative quantum
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gravity theory. In perturbative quantum gravity, the parallel transport determined
by the Wilson loop has been used to research the possible quantum behavior of
excitation (Modanese, 1994) of the space-time curvature and to construct the
two-point correlation functions of the space—time curvature.

By using the holonomy as the propagator of parallel transport of a vector
along a geodesic, some forms of the invariant curvature correlation functions were
defined in Modanese (1992). Itis a valuable way to construct the correlation func-
tionsin curved space—time. In this paper, according to this way, under the Euclidean
space-time background, we formulate several two-point curvature vacuum correla-
tion functions and calculate their leading term contributions inNk@imensional
Einstein gravity one by one. It is shown that the leading term contributions of such
correlation functions vanish. Thus, the gravity cannot propagate in vacuum. This
is a reasonable result for the gravity.

In Section 2, the perturbative expansion of the curvaturdidimensional
Einstein gravity is calculated. In Section 3, the propagators of gravity are given. In
Section 4, the curvature vacuum correlations functions are calculated. In Section 5,
conclusion and discussion are given.

2. THE PERTURBATIVE EXPANSION OF THE CURVATURE
IN N-DIMENSIONAL EINSTEIN GRAVITY

Let M be anN-dimensional space—time manifold, its geometry given by the
metricg,,(x). The dynamics of th&-dimensional Einstein gravitational field is
given by the action

S= k—lz dVx /g(x)R(X) 1)

where k? = 167G (G is the Newtonian gravitational constant, ag(x) =
detg,.,(x)). The Christoffel connection d! is defined as

o

1 78
i = 59" @+ Guip — Gup.n)

The Riemann curvature tensor is

o _ T a A o A o
R/l«ﬁv - F/L,ﬁv - F/w,ﬂ + F/tﬁrkv - F/LUFAﬂ
We decompose the metric tenspy, (x) as
guv(x) = S,uv + hkh,uv(x) (2)

wheren denotes the small parameter. The tefyn in (2) is interpreted as the
classical background metric, while the tehm, (x) is regarded as a weak grav-
itation field which represents gravity propagating in the vacuum. The indices of
h,.,(x) are raised and lowered by the metric of Euclidean backgréthends,,,
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respectively. Also the inverse metric can be obtained as
g"’(x) = 8"V — hkh* + h2k2h*eh? 4+ O(h3) (3)

whereO(h?®) is a three-order small quantity m
Substituting (2) and (3) into (1), we obtain the expansion formula for the
connection

re, =T — % + O(h%) (4)

where

FZ,B - (haﬁ,u + hau,ﬂ - h[L,B,Ol)

e, =3 hzkz(hamm,# + Naali s — Mo s i)

By using (4), we can expand the curvature to a linear part and a square partin
terms ofh. We calculate the Riemann curvature tensor, the Ricci curvature tensor,
the rotation matrix, and the curvature scalar.

(a) The Riemann curvature tensor

o 3
R,uﬂv - Ruﬁv /,L[SU + O(h ) (5)
where
Riss = Typw = i

= Ehk(hau,ﬁ,v + haﬂvuvv - hﬁuyvva - hau,v,ﬂ - hav:u,ﬁ + huvva,ﬁ)
(6)

sQn

¢ =T T 4 Th T [

= —éhzkz[hm(hmﬁ + Ngre — D)l
+ %thZ[hM(hM,V +hor =)l
0K+ M — 1) (s + s — )

1
- thkz(hu)\,v + hvk,;t - h;w,)») : (hAa,ﬁ + haﬁ,k - hﬁk,a)
(b) The Ricci curvature tensor

Rw = R%,, = Ry + Ry, + O(h%) 7)

i
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where
Rl’-” = F/)lrr,v - F/);_v,)\
1
- Ehk(h/w,a,a + h)\.A.,lL,V - huA,//.,A - h/M,v,A) (8)
D _ 1P = =) A P
wy Fup,v - F;w,p + Fkvrup - Flwr)»p

1
= éhzkz(hp)\,vhup,)\ - hpk,vhuA,p - hpkhkp,u,v
+ hpkhup,k,v + hpAhAv,/A,p - hpkhuv,k,p + hpk,phuk,v
+ hp)\,phu)»,u, - hp)\,phu,v,)h + hpv,khﬂk,p - hkv,phﬂk,p)
1
= thkz(hp.v‘khpp,k - hpA,vhpk,u - huk,vhpp,k - hvx,uhpp,)»)

(c) The “rotation matrix”
R:)l. — I/-aﬂaotﬂ
= [Rlus + Rigg + O(N)]o*” 9)
whereo®? is an infinitesimal surface arouxd Equation (9) can be noted

as rotation matrix (Modanese, 1992).
(d) The curvature scalar

R=g""R,, = R+ R+ O(h%) (10)
where
R = hk(N,u,00 = Nyuwn) — h2Khay
X (Nay,ps = Nap.p,y — Npy.ap + DNppay) (11)

= 1
R= thkz(zh,tﬁ,ahaﬁ,ﬂ — 3Nup.aNupe — s phoa

+ 4huﬂ,ﬂhw,a + haw,uhﬁﬂw)

3. THE PROPAGATORS
3.1. The Propagators of Parallel Transport of Tensor

We define the vacuum correlation function by means of the vector paral-
lel transport propagator (Modanese, 1992, 1993) along the geodesic in order to
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obtain the appropriate form of the invariant two-point curvature vacuum corre-
lation function in the curved space—tinié. Let a vector* (x’) at the pointx’
parallel transport to a vector‘(x) at the pointx. Then the parallel transport is
determined by the holonomy

) = pespl [ e, 0) 12

whereH ,’j/(x, x') is the propagator of parallel transport of the vector, Bmdeans
that the integral is computed along the geodesic. The propagator of parallel trans-
port of tensofT #V*(x) on M is given by

Hi. 06 X) = HEOGOOHE 06 X) -+ (13)

'I_'hel indices oﬂ-|/‘f,(x, x') are raised and lowered IV (x') andg,,(x) respec-
tively:

HJ (%, X)g" (x') = H™ (x, X)) (14)

HZ (X, X) G (X) = Hypo (X, X') (15)

In order to require the propagators of parallel transport which are used in different
invariant curvature vacuum correlations, we expand (12) and have

X
HY(x, X) =8, + /X d&* Ty,.(8)
1

+5 [ g [ detr @@+ 0% @)

Using (13)—(16), (2), and (3), we can obtain the propagators of parallel transport
which are used in different curvature correlation functions along the geodesic as
follows:

(a) The propagator of parallel transport of the Riemann curvature tensor

I Iaﬂ)/a/ﬁ/l’/ H I Iowz'l Iﬂﬂ’l |]/y’ } Iaﬁya'ﬁ’y' I Iaﬂ)\a,ﬂ,}’, o) h2
nu' ! Ty nu' ( )

where

o

HePye By — Mll,(gaa’(gﬂﬁ’gw’ (18)

up!
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"TZZ)//Q P = hk[saalaﬂﬂlayy/hwﬂ(x) - ‘Sxm’(saa/‘sﬂﬁlhyyl(xl)
— 8,,08%% 8VV PP (X') — 8,0 8PP 877" h (x')]

X . ’ ’ ’
+ 808 8% / AP T77(6) + 8,087 877
5
X — ! ’ ! X - ’
X / dsﬂ Fgﬁ (g) 4 Suﬂ,gﬂﬂ §vY // dép l—‘ga (E)
X X

’ ’ ’ X — ’
4 s §PP svY / dé” Fgu (5)
X/
(b) The propagator of parallel transport of the Ricci curvature tensor
Haﬂoﬂﬁ’ — Haa’Hﬁﬂ’ — ﬁaﬁa’ﬂ’z l_Talga'ﬂ/ + O(hz) (19)
where

HoseB = e 58 (20)
X
Japa’ aa’ a —~BB
H =6 [—hkhﬂﬁ (x)+/x/ dg” T8 (s)]

+ 88F [—hkh““’(x’) + / ,X de’ Fg“’(g)]

(c) The propagator of parallel transport of the rotation matrix

HEY = H,e H* = HY, + HYY, + O(h?) (21)
where
HA% = 8,8 (22)

y / y _—
H = AR Ry (X) — DS, () + 8,0 / de? o (6)
y
X — ’
+ o [ de? P E)
y

3.2. The Graviton Free Propagator

To get the propagator of gravity in tHé-dimensional Einstein gravity, we
may consider the functional

7 / dlg] eXp[iﬁ{S(g)}]
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as the original generating functional for the path integral quantization of the grav-
itational field. However, for simplicity, here we use the familiar Feynman—-DeWitt
propagator:

(huv(x)haﬂ(y» = _CN {5u(a5ﬁ)u - [2/(N - 2)]6uv8aﬂ}(x - y)27N (23)
whereCy (N > 3) is a positive coefficient, and

Cu — N2z N2 (N/2 — 1)
"T e T
In the above expression, the symlbois theI” function.

4. THE CALCULATION OF THE CURVATURE VACUUM
CORRELATION FUNCTIONS

4.1. Definition of the Curvature Vacuum Correlation Functions

Now, we consider the tensor propagator which parallel transports a tensor
at pointx’ to a tensor at point along the geodesic of lengfh which connects
X’ to x. For the “different curvatures,” we may formulate the invariant two-point
vacuum correlation functions as follows:

(a) The two-point vacuum correlation function of the Riemann curvature
tensor

Greman{D) = (Rlys QO P (X xR, (), (24)
(b) The two-point vacuum correlation function of the Ricci curvature tensor
Gricei(D) = (Rep(x)H 7 (x, X)R*7 (X)), (25)
(c) The two-point vacuum correlation function of the rotation matrix
Groop(D, 0, 0") = (RGO H (. X)RY (X)), (26)
(d) The two-point vacuum correlation function of the curvature scalar

Gr(D) = (RX)R(X)), (27)

4.2. Calculation of the Correlation Functions

(&) The calculation 06Riemand D)
Introducing (5) and (17) into (24), we get

GRiemanr(D) = Géiemanr(D) + G%iemanr(D) + O(h4)
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where
Rlemanr‘(D) ( vaf (X)H vaﬂv o« (X X )Rv o’ ﬂ’(x)>o (28)
Giemand D) = (Rl COHZE" P (X, X) Rl (X)),
< mﬂ(x)Hvaﬂvaﬂ (X X )Rvaﬁ (X ))

+ (R G OOH B (3, X YR g (X)),
Now, we calculate the first ter@;.,,{D) of the correlation function
of the Riemann curvature tensor. Putting (6) and (18) into (28), we get

1
;?iemanr(D) = Zh2k2<(halhv,ﬂ(x) - hav,ll-,ﬂ(x)

- hﬁp.,v,a(x) + hvﬁ,;}.,a(x)) : (hau,v,ﬁ(xl)
- hav,u,ﬂ(x/) - hﬂu,v,a(xl) + hvﬁ,u,a(xl)»o

50050
(N, 00N s XN o = (e, s OON e v,a (X))o
+ (Naw, s (ONup e (X)) ] (29)
Substituting (23) into (29) and using

Cn

W—D/d [(27) NP7 - P
=—-8Nx—-vy)

wheren = 949, = 9,9,.
We obtain the result

hzkN3—3N2+2

N3 osN(x —x) (30)

Gl%ziemanr( D) =

(b) The calculation of5gjci(D)
Putting (7) and (18) into (25), we get

Gricei(D) = RICCI(D) + GRICCI(D) + O(h4)

where

Glicai(D) = (Rug COH ™ (X, X') Ry (X)) (31)
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GZieci( D) = (Rus ()H (X, X') Ry (X))
+ (RypCOHYP (X, X') Ry (X))
+ (Rug OO H (%, X') Ry (X))

In order to obtairGL,. (D), we introduce (8) and (20) into (31), and then
we have

Ghica(D) = 30Ky 00+ iy 50 — My ()
Ny 00) - (P () + Py )
Ny () = Py g (K.
= 2T (0 0V X (i OO ().

- 2 /,L[,LOtOt(X)h)LV)\.V(X) _2 vkaa(x)huvuk(x)
+ 2 vk,/},,k(x)h/wt,v,a(x ) o] (32)
Putting (23) into (32), we get

N3 —3N2—-2N +4

AN 2) osN(x —x) (33)

RICCI( D) - h2

(c) The calculation 06 oop(D, 0, 0”)
By virtue of (9) and (21), we may get from (26)

GLoop(D, 0, 0") = Glog(D, 0, 0”) + Go(D, 3, 6”) + O(h?)  (34)
where
Gloop(D. 0, 0") = (R, COHEE (x, )RS, (X)), 0 6" (35)
Gloop(D: 7, ') = (R, COHEE (X, X )R, (X)) o0
+ (R, COHEE (x, X)RY, 1 (X)),
+ (R, (O HEE (x, X) R (X)),
Using (6) and (22), we have from (35)
Glane(D. 3,0") = 7000 (1, 0) + P ()

- huﬂ,v,a(x) - hav,u,ﬂ(x/)) . (hau,v’,ﬂ’(x/)
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+ hv’ﬁ,u’,a(x/) - hu’ﬂ,v’,rx(x/) - hav’,u’,ﬁ(x/)))o
1 ‘o
= thkzd””d”” [P, ) Nan 6 (X))o

+ (Mg, s OONug 0 (XN = (M, p(X)

X Ngva(X))o + (Napv,s()Naw s (X))o

+ (g, 10,0 N 00, 5 (X))o + (Pup .0 (X)

X Nyg o a(X))o + (Mg e )N gra (X))o

—= (N, Ny, 5 (X))o — (g, (X)

X Ny g (X))o = (Nupva (Nurp e (X))o

+ (Nupv,e (ONwp e (X))o + (Nup e (X)

X Do, (X))o = (N, o, p )Ny, 6 (X))o

— (Naw, 1, s ()N g o (X))o + (o, p(X)

X Mg a(Xo + (Mav g e, p (X))ol (36)
Introducing (23) into (36), we obtain

, N2 — 2N — 2
G&OOD(D’ 0,0 ) = ZhZKZv

In our abelian approximation, the calculation resullijfoop(D, o,0')
is identical to the one of a Wilson loop computed along a dumbbell-like
contour.
(d) The calculation of5r(D)
Putting (15) into (35), we get

Gr(D) = GK(D) + G4(D) + O(h*)

oo, 38N —x)  (37)

where
G&(D) = (RE)R(X))s (38)
GA(D) = (RXR(X)). + (RE)RKX)).
Using (11), and from (38), we have
GR(D) = h2K*{(Nyuse,0,0 (}) = Myw 0 () = (Mg (X) = By (X))
= h?K2[{Nuyi,0,0 (N, .8 ())o = (g0 ONap (X))o

- <hxw,u,v(x) - haa,ﬁ,ﬁ(x/))o + <hw4,v,v(X)haﬁ,a,ﬁ(x/»O]
(39)
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By virtue of (22) and (39), the following result is obtained:
2(N —1)

1 D) = _h2k2
GK(D) —

o8N (x — x) (40)

5. DISCUSSION

Expressions (30), (33), (37), and (40) show that all the leading terms of the
correlation function$riemann Gricci» GLoop, @NdGR contain the derivative factors
of §-function, which vanish in the case we consider. Thus, we can show that the
contribution of the first term, of orddr’k?, vanishes for every vacuum correlation
function in theN-dimensional Einstein gravity. We conclude that the contribution
of the first term of ordeh?k? vanishes for every vacuum correlation function in
the N-dimensional Einstein gravity. As for the higher order, contributions come
from the second terms and the loop corrections may be nonvanishing, but their
quantities are very small. In Einstein gravity, because of the mass dimension of
the gravitational coupling constaktafter quantization of the gravity we shall get
a non-renormalizable quantum theory. So the value of the higher order terms and
the corrections is not so important as the value of the first term to each correlation
function. Thus, under the current situation of perturbative quantization of the
gravity, the two-point curvature correlation functions shall vanish (neglecting the
higher order contributions). This resultis consistent with many authors’ estimation
(Modanese, 1992, 1994).

If we consider the action of Einstein gravity under the flat Minkowski space—
time background as

1
S= E/d”x‘/—g(x)g’”R,w

and expand the metric density perturbatively with the Minkowski mejiyic we
have

0"’ = V=99 n"" + hkh"

For the original generating functional, we set
~ [

zzfmmw{#aw}
Then the calculation results of the first terms remain identical to the results of (30),
(33), (37), and (40), respectively.

If one defines the correlation functions as those given in this paper, and

considers the renormalizabiR+ R? 4+ R R.-gravity, one can obtain the fact that
the leading terms of the two-point vacuum correlation functions do not vanish.

In the R + R? + R"R.-gravity, the curvature may be used as the counter-terms
in the lagrangian to cancel the divergences in the theory (Stelle, 1977), and the



972 Shao, Noda, Shao, and Shao

curvature can be propagated in the gravity; this is consistent with that the curvature
correlation functions of the gravity are not zero.
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